Step 1: Identify the given parameters.
Length of the solenoid, \( L = 1 \, \text{m} \)
Inner diameter = \( 3.55 \, \text{cm} \) (This information about diameter is typically not needed for the magnetic field at the center of a long solenoid, as long as the length is much greater than the diameter, which it is here).
Current, \( I = 5 \, A \)
Number of layers = \( 5 \)
Number of turns per layer = \( 700 \) turns/layer
Step 2: Calculate the total number of turns (N).
Total number of turns, \( N = \text{Number of layers} \times \text{Number of turns per layer} \)
\( N = 5 \times 700 = 3500 \, \text{turns} \).
Step 3: Calculate the number of turns per unit length (n).
The number of turns per unit length, \( n = \frac{\text{Total number of turns}}{\text{Length of the solenoid}} \)
\( n = \frac{N}{L} = \frac{3500 \, \text{turns}}{1 \, \text{m}} = 3500 \, \text{turns/m} \).
Step 4: Use the formula for the magnetic field at the center of a long solenoid.
The magnetic field (\( B \)) at the center of a long solenoid is given by the formula:
\( B = \mu_0 n I \)
where \( \mu_0 \) is the permeability of free space, \( \mu_0 = 4\pi \times 10^{-7} \, \text{T m/A} \).
Step 5: Substitute the values and calculate \( B \).
\( B = (4\pi \times 10^{-7} \, \text{T m/A}) \times (3500 \, \text{turns/m}) \times (5 \, \text{A}) \)
\( B = 4 \times 3.14 \times 10^{-7} \times 3500 \times 5 \)
\( B = 4 \times 3.14 \times 10^{-7} \times 17500 \)
\( B = 4 \times 3.14 \times 1.75 \times 10^{-7} \times 10^4 \)
\( B = 4 \times 3.14 \times 1.75 \times 10^{-3} \)
\( B = 12.56 \times 1.75 \times 10^{-3} \)
\( B = 21.98 \times 10^{-3} \, \text{T} \)
\( B \approx 22 \times 10^{-3} \, \text{T} \)
\( B = 22 \, \text{mT} \) (millitesla).