Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
Match List-I with List-II\[\begin{array}{|c|c|} \hline \textbf{Provision} & \textbf{Case Law} \\ \hline \text{(A) Strict Liability} & \text{(1) Ryland v. Fletcher} \\ \hline \text{(B) Absolute Liability} & \text{(II) M.C. Mehta v. Union of India} \\ \hline \text{(C) Negligence} & \text{(III) Nicholas v. Marsland} \\ \hline \text{(D) Act of God} & \text{(IV) MCD v. Subhagwanti} \\ \hline \end{array}\]
Match List-I with List-II\[\begin{array}{|c|c|} \hline \textbf{List-1} & \textbf{List-II} \\ \hline \text{(A) Hadley v. Baxendale} & \text{(1) Undue Influence} \\ \hline \text{(B) Henkel v. Pape} & \text{(II) Coercion} \\ \hline \text{(C) Manu Singh v. Umadat Pandey} & \text{(III) Quantum of Damages} \\ \hline \text{(D) Chikkam Amiraju v. Seshamma} & \text{(IV) Mistake} \\ \hline \end{array}\]
Match List-I with List-II
\[\begin{array}{|c|c|} \hline \textbf{List-1} & \textbf{List-II} \\ \hline \text{(A) Complete Justice} & \text{(I) Article 137} \\ \hline \text{(B) Special Leave Petition} & \text{(II) Article 131} \\ \hline \text{(C) Review of the Judgments} & \text{(III) Article 142} \\ \hline \text{(D) Original Jurisdiction} & \text{(IV) Article 136} \\ \hline \end{array}\]
Match List-I with List-II
Match List-I with List-II
\[\begin{array}{|c|c|} \hline \textbf{List-1} & \textbf{List-II} \\ \hline \text{(A) Ram Jawaya Kapur v. State of Punjab} & \text{(I) Separation of powers} \\ \hline \text{(B) Delhi Laws Act, 1912} & \text{(II) Delegated legislation} \\ \hline \text{(C) Maneka Gandhi v. Union of India} & \text{(III) Doctrine of proportionality} \\ \hline \text{(D) Om Kumar v. Union of India} & \text{(IV) Post decisional hearing} \\ \hline \end{array}\]