A small block of mass \(m\) slides down from the top of a frictionless inclined surface, while the inclined plane is moving towards left with constant acceleration \(a_0\). The angle between the inclined plane and ground is \(\theta\) and its base length is \(L\). Assuming that initially the small block is at the top of the inclined plane, the time it takes to reach the lowest point of the inclined plane is _______. 
A thermodynamic system is taken through the cyclic process \(ABC\) as shown in the \(P\!-\!V\) diagram. The total work done by the system during the cycle \(ABC\) is _______ J. 
Given: The area enclosed by the cycle in the \(P\!-\!V\) diagram represents the work done.
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.