The system is a first-order system with transfer-function \( G(s) = \frac{1}{s + 1} \). For a sinusoidal input of the form \( A \sin t \), the steady-state output amplitude \( Y_{\text{ss}} \) is given by:
\[
Y_{\text{ss}} = |G(j\omega)| \cdot A
\]
where \( \omega = 1 \) (since the input is \( \sqrt{2} \sin t \)) and \( G(j\omega) = \frac{1}{j\omega + 1} \). We compute:
\[
|G(j\omega)| = \frac{1}{\sqrt{1^2 + 1^2}} = \frac{1}{\sqrt{2}}
\]
Thus, the amplitude of the steady-state output is:
\[
Y_{\text{ss}} = \frac{1}{\sqrt{2}} \cdot \sqrt{2} = 1
\]
Thus, the amplitude of the steady-state output is \( 1 \).