Steam economy:
\[
\text{Economy} = \frac{\text{kg of water evaporated}}{\text{kg of steam used}} = 0.8
\]
Steam used = 7500 kg/h, therefore evaporated water:
\[
W = 0.8 \times 7500 = 6000\ \text{kg/h}
\]
Total heat required in evaporator:
\[
Q = \underbrace{F C_p (T_b - T_f)}_{\text{sensible}} + \underbrace{W \lambda}_{\text{latent}}
\]
Sensible heat:
\[
Q_s = 10000 \times 0.8 \times (80 - 40)
= 10000 \times 0.8 \times 40
= 320{,}000\ \text{kcal/h}
\]
Latent heat:
\[
Q_l = 6000 \times 500 = 3{,}000{,}000\ \text{kcal/h}
\]
Total heat load:
\[
Q = Q_s + Q_l = 3{,}320{,}000\ \text{kcal/h}
\]
Temperature driving force:
\[
\Delta T = 150 - 80 = 70^\circ\text{C}
\]
Overall heat-transfer coefficient:
\[
U = \frac{Q}{A\,\Delta T}
= \frac{3{,}320{,}000}{70 \times 70}
= \frac{3{,}320{,}000}{4900}
= 677.55\ \text{kcal h}^{-1}\text{m}^{-2}\text{K}^{-1}
\]
Rounded to nearest integer:
\[
U = 678
\]