First, convert the engine displacement volume to cubic meters:
\[
V_{\text{displacement}} = 9 \, \text{L} = 9 \times 10^{-3} \, \text{m}^3.
\]
Since the engine is a four-stroke, it takes two revolutions to complete a full intake cycle, so the air intake per revolution is half the displacement volume:
\[
\text{Air intake per revolution} = \frac{9 \times 10^{-3}}{2} = 4.5 \times 10^{-3} \, \text{m}^3.
\]
At 2400 rpm, the air intake per second is:
\[
\text{Air intake per second} = \frac{2400}{60} \times 4.5 \times 10^{-3} = 0.18 \, \text{m}^3 \, \text{s}^{-1}.
\]
Considering the volumetric efficiency is 88%, the actual air inducted is:
\[
\text{Actual air inducted} = 0.88 \times 0.18 = 0.1584 \, \text{m}^3 \, \text{s}^{-1}.
\]
Thus, the actual air inducted is approximately \(\boxed{0.158} \, \text{m}^3 \, \text{s}^{-1}\).