A simple pendulum of length $30$ cm makes $20$ oscillations in $10$ s on a certain planet. Another pendulum makes $40$ oscillations in $10$ s on the same planet. Find the length of the second pendulum.
Show Hint
On the same planet, $g$ is constant, so always relate pendulum lengths using $T^2 \propto \ell$.
Concept:
For a simple pendulum:
\[
T = 2\pi\sqrt{\frac{\ell}{g}}
\]
On the same planet, $g$ remains constant. Hence,
\[
T \propto \sqrt{\ell}
\quad \text{or} \quad
\ell \propto T^2
\]
Step 1: Calculate time periods
First pendulum:
\[
T_1=\frac{10}{20}=0.5\ \text{s}
\]
Second pendulum:
\[
T_2=\frac{10}{40}=0.25\ \text{s}
\]
Step 2: Use proportionality
\[
\frac{\ell_1}{\ell_2}=\left(\frac{T_1}{T_2}\right)^2
\]
Step 3: Substitute values
\[
\frac{30}{\ell_2}=\left(\frac{0.5}{0.25}\right)^2
=4
\]
Step 4: Solve for $\ell_2$
\[
\ell_2=\frac{30}{4}=7.5\ \text{cm}
\]
Step 5:
Hence, the length of the second pendulum is:
\[
\boxed{7.5\ \text{cm}}
\]