The Nyquist rate is twice the bandwidth:
\[
f_{\text{Nyquist}} = 2 \times 5 \, \text{MHz} = 10 \, \text{MHz}
\]
The sampling rate is 50% above the Nyquist rate:
\[
f_{\text{sampling}} = 1.5 \times f_{\text{Nyquist}} = 1.5 \times 10 \, \text{MHz} = 15 \, \text{MHz}
\]
The quantization levels are 256, so the number of bits per sample is:
\[
\text{Bits per sample} = \log_2(256) = 8 \, \text{bits}
\]
Thus, the binary pulse rate is:
\[
\text{Pulse rate} = f_{\text{sampling}} \times \text{Bits per sample} = 15 \times 10^6 \times 8 = 120 \, \text{Mbits/s}
\]
Thus, the binary pulse rate of the PCM signal is \( 120 \, \text{Mbits/s} \).