Step 1: Use mirror formula.
\[ \frac{1}{f} = \frac{1}{u} + \frac{1}{v} \] For \(u = 3 \, \text{m}, f = 1 \, \text{m}\): \[ \frac{1}{v} = \frac{1}{1} - \frac{1}{3} = \frac{2}{3} \Rightarrow v = 1.5 \, \text{m} \]
Step 2: Linear magnification.
\[ m = \frac{v}{u} = \frac{1.5}{3} = 0.5 \] Since the image is inverted, magnification \(m = -0.5\).
Step 3: Ratio of image length to object length.
\[ \frac{L'}{L} = |m|^2 = (0.5)^2 = \frac{1}{4} \]
Step 4: Conclusion.
Hence, the ratio \(\dfrac{L'}{L} = \dfrac{1}{4}\).
| List-I | List-II | ||
| P | If \(n = 2\) and \(\alpha = 180°\), then all the possible values of \(\theta_0\) will be | I | \(30\degree\) or \(0\degree\) |
| Q | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\theta_0\) will be | II | \(60\degree\) or \(0\degree\) |
| R | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\phi_0\) will be | III | \(45\degree\) or \( 0\degree\) |
| S | If \(n = \sqrt2\) and \(\theta_0 = 45°\), then all the possible values of \(\alpha\) will be | IV | \(150\degree\) |
| \[0\degree\] | |||
