The pulley applies a torque on the shaft due to the difference in belt tensions:
\[
T = (T_1 - T_2)\, r = (300 - 100)(0.4) = 200 \times 0.4 = 80\ \text{N·m}
\]
Convert torque to N·mm:
\[
80\ \text{N·m} = 80 \times 1000 = 80000\ \text{N·mm}
\]
For a solid circular shaft, the maximum shear stress is:
\[
\tau_{\max} = \frac{16T}{\pi d^3}
\]
Allowable shear stress:
\[
\tau_{\text{allow}} = 80\ \text{MPa} = 80\ \text{N/mm}^2
\]
Set the maximum shear stress equal to allowable:
\[
80 = \frac{16(80000)}{\pi d^3}
\]
Rearrange:
\[
d^3 = \frac{16(80000)}{80 \pi}
\]
\[
d^3 = \frac{1280000}{80\pi} = \frac{16000}{\pi}
\]
Using \( \pi \approx 3.142 \):
\[
d^3 = \frac{16000}{3.142} \approx 5092.5
\]
\[
d = \sqrt[3]{5092.5} \approx 23.8\ \text{mm}
\]
Thus, the minimum required shaft diameter is approximately \(23.8\ \text{mm}\).