Step 1: Recall slip systems in FCC.
- FCC crystals slip along $\{111\}$ planes in $\langle 110 \rangle$ directions.
- This gives 12 slip systems in total.
Step 2: Burgers vector direction.
The Burgers vector is:
\[
\vec{b} = \frac{a}{2}[110]
\]
This is a $\langle 110 \rangle$ direction, which is a valid slip direction in FCC.
Step 3: Identify compatible planes.
For slip to occur, $\vec{b}$ must lie in the plane. That means the Burgers vector direction should be perpendicular to the plane’s normal vector.
- For $(111)$ plane: normal $= [111]$
\[
[110] . [111] = 1+1+0 = 2 \neq 0 \ \Rightarrow [110] \in (111) \ \text{plane}
\]
- For $(1\bar{1}1)$ plane: normal $= [1\ -1\ 1]$
\[
[110] . [1\ -1\ 1] = 1-1+0 = 0 \ \Rightarrow [110] \in (1\bar{1}1)
\]
- For $(\bar{1}11)$ plane: normal $= [-1\ 1\ 1]$
\[
[110] . [-1\ 1\ 1] = -1+1+0 = 0 \ \Rightarrow [110] \in (\bar{1}11)
\]
- For $(11\bar{1})$ plane: normal $= [1\ 1\ -1]$
\[
[110] . [1\ 1\ -1] = 1+1+0 = 2 \neq 0 \ \Rightarrow [110] \notin (11\bar{1})
\]
Step 4: Conclusion.
The Burgers vector $\frac{a}{2}[110]$ lies in $(111)$, $(1\bar{1}1)$, and $(\bar{1}11)$ planes, but not in $(11\bar{1})$.
Final Answer:
\[
\boxed{(A), (B), (C)}
\]