The formula for the tangential velocity of a satellite is:
\[
v = \sqrt{\frac{GM}{r}},
\]
where:
- \( G = 6.674 \times 10^{-11} \, \text{m}^3\text{kg}^{-1}\text{s}^{-2} \) is the gravitational constant,
- \( M = 5.97 \times 10^{24} \, \text{kg} \) is the mass of the Earth,
- \( r \) is the distance from the center of the Earth to the satellite, which is the sum of the Earth's radius and the satellite's altitude:
\[
r = 6300 \, \text{km} + 700 \, \text{km} = 7000 \, \text{km} = 7 \times 10^6 \, \text{m}.
\]
Now, substituting the values:
\[
v = \sqrt{\frac{(6.674 \times 10^{-11}) \times (5.97 \times 10^{24})}{7 \times 10^6}} \approx 7520 \, \text{m/s} = 7.52 \, \text{km/s}.
\]
Thus, the tangential velocity of the satellite is \( \boxed{7.52} \, \text{km/s} \).