Step 1: Understand the problem
We need to calculate the time period (T) of a satellite orbiting the Earth in a circular orbit at an altitude of 1000 km.
Step 2: Given data
- Mass of the Earth, M = \(6 \times 10^{24}\) kg
- Radius of the Earth, R = \(6.4 \times 10^{6}\) m
- Altitude of satellite, h = 1000 km = \(1 \times 10^{6}\) m
- Gravitational constant, G = \(6.67 \times 10^{-11}\) Nm²/kg²
Step 3: Calculate the orbital radius
The radius of the orbit, r = R + h = \(6.4 \times 10^{6} + 1 \times 10^{6} = 7.4 \times 10^{6}\) m
Step 4: Use the formula for orbital period
The orbital period is given by:
\[
T = 2\pi \sqrt{\frac{r^3}{GM}}
\]
Step 5: Substitute values and calculate
\[
T = 2\pi \sqrt{\frac{(7.4 \times 10^{6})^3}{6.67 \times 10^{-11} \times 6 \times 10^{24}}}
\]
Calculate inside the square root:
\[
r^3 = (7.4)^3 \times 10^{18} = 405.224 \times 10^{18}
\]
\[
GM = 6.67 \times 10^{-11} \times 6 \times 10^{24} = 4.002 \times 10^{14}
\]
So,
\[
\frac{r^3}{GM} = \frac{405.224 \times 10^{18}}{4.002 \times 10^{14}} = 1.012 \times 10^{6}
\]
Taking square root:
\[
\sqrt{1.012 \times 10^{6}} \approx 1006
\]
Therefore,
\[
T = 2 \pi \times 1006 \approx 6321 \text{ seconds}
\]
Convert to minutes:
\[
\frac{6321}{60} \approx 105 \text{ minutes}
\]
Step 6: Conclusion
The time period of the satellite in its orbit is approximately 105 minutes.