Given that, total mass of organic compound = 0.50 g
60 mL of 0.5 M solution of NaOH was required by residual acid for neutralization.
60 mL of 0.5 M NaOH solution \(=\frac{60}{2}\) ML of 0.5 M H2SO4 = 30 mL of 0.5 M H2SO4
∴Acid consumed in absorption of evolved ammonia is (50-30) mL = 20 mL
Again, 20 mL of 0.5 MH2SO4 = 40 mL of 0.5 MNH3
Also, since 1000 mL of 1 MNH3 contains 14 g of nitrogen,
∴ 40 mL of 0.5 M NH3 will contain \(\frac{14×40}{1000}×0.5= 0.28\) g of N
Therefore, the percentage of nitrogen in 0.50 g of organic compound \(-\frac{0.28}{0.50}×100= 56%\)%
List-I | List-II | ||
(A) | 1 mol of H2O to O2 | (I) | 3F |
(B) | 1 mol of MnO-4 to Mn2+ | (II) | 2F |
(C) | 1.5 mol of Ca from molten CaCl2 | (III) | 1F |
(D) | 1 mol of FeO to Fe2O3 | (IV) | 5F |
List-I | List-II | ||
(A) | [Co(NH3)5(NO2)]Cl2 | (I) | Solvate isomerism |
(B) | [Co(NH3)5(SO4)]Br | (II) | Linkage isomerism |
(C) | [Co(NH3)6] [Cr(CN)6] | (III) | Ionization isomerism |
(D) | [Co(H2O)6]Cl3 | (IV) | Coordination isomerism |
SN1 reaction mechanism takes place by following three steps –
The SN2 reaction mechanism involves the nucleophilic substitution reaction of the leaving group (which generally consists of halide groups or other electron-withdrawing groups) with a nucleophile in a given organic compound.
The mechanism of an electrophilic aromatic substitution reaction contains three main components which are:
The electrophilic substitution reaction mechanism is composed of three steps, which will be discussed more below.