Step 1: Use elastic potential energy:
\[
U = \frac{1}{2} Y \cdot A \cdot \frac{x^2}{L}
\]
Where:
- \( Y = 5 \times 10^8\,\text{Nm}^{-2} \)
- \( A = 5\,\text{mm}^2 = 5 \times 10^{-6}\,\text{m}^2 \)
- \( x = 2\,\text{cm} = 0.02\,\text{m} \)
- \( L = 0.02\,\text{m} \)
\[
U = \frac{1}{2} \cdot 5 \times 10^8 \cdot 5 \times 10^{-6} \cdot \frac{(0.02)^2}{0.02}
= 2.5\,\text{J}
\]
Step 2: Equating to kinetic energy:
\[
\frac{1}{2} mv^2 = U \Rightarrow \frac{1}{2} \cdot 0.02 \cdot v^2 = 2.5
\Rightarrow v^2 = 250 \Rightarrow v = \boxed{50\,\text{ms}^{-1}}
\]