Key Idea : When no external torque acts on a system of particles, then the total angular momentum of the system remains always a constant.
The angular momentum of a disc of moment of inertia $I_{1}$ and rotating about its axis with angular velocity $\omega$ is
$L_{1}=I_{1} \omega$
When a round disc of moment of inertia $I_{2}$ is placed on first disc, then angular momentum of the combination is
$L_{2}=\left(I_{1}+I_{2}\right) \omega^{\prime}$
In the absence of any external torque, angular momentum remains conserved i.e.,
$ L_{1} =L_{2} $
$I_{1} \omega =\left(I_{1}+I_{2}\right) \omega' $
$\Rightarrow \omega' =\frac{I_{1} \omega}{I_{1}+I_{2}}$