

To solve the problem, let's analyze each statement step by step:
\(dm = λ(x) \cdot dx = \frac{3Mx^2}{L^3} \cdot dx\)
\(dI = x^2 \cdot dm = x^2 \cdot \frac{3Mx^2}{L^3} \cdot dx\)
\(I = \int_{0}^{L} x^2 \cdot \frac{3Mx^2}{L^3} \, dx = \frac{3M}{L^3} \cdot \int_{0}^{L} x^4 \, dx\)
\( = \frac{3M}{L^3} \cdot \left[\frac{x^5}{5}\right]_{0}^{L} = \frac{3M}{L^3} \cdot \frac{L^5}{5} = \frac{3}{5}ML^2\)
\(df = dm \cdot g = \frac{3Mgx^2}{L^3} \cdot dx\)
\(d\tau = x \cdot df = x \cdot \frac{3Mgx^2}{L^3} \cdot dx = \frac{3Mgx^3}{L^3} \cdot dx\)
\(\tau = \int_{0}^{L} \frac{3Mgx^3}{L^3} \, dx = \frac{3Mg}{L^3} \cdot \int_{0}^{L} x^3 \, dx\)
\( = \frac{3Mg}{L^3} \cdot \left[\frac{x^4}{4}\right]_{0}^{L} = \frac{3Mg}{L^3} \cdot \frac{L^4}{4} = \frac{3}{4}MgL\)
Thus, the two correct statements are:
In order to achieve the static equilibrium of the see-saw about the fulcrum \( P \), shown in the figure, the weight of Box B should be _________ kg, if the weight of Box A is 50 kg.

A particle of mass 1kg, initially at rest, starts sliding down from the top of a frictionless inclined plane of angle \(\frac{𝜋}{6}\)\(\frac{\pi}{6}\) (as schematically shown in the figure). The magnitude of the torque on the particle about the point O after a time 2seconds is ______N-m. (Rounded off to nearest integer) 
(Take g = 10m/s2)

