The change in length of the rod due to temperature change is given by the formula:
\[
\Delta L = L_0 \alpha \Delta T
\]
Where:
- \( \Delta L = 0.05 \, \text{cm} \) (the increase in length),
- \( \alpha = 1.5 \times 10^{-5} \, \text{°C}^{-1} \) (the coefficient of linear expansion),
- \( \Delta T = 40 - 10 = 30 \, \text{°C} \) (the temperature change).
Substitute the known values:
\[
0.05 = L_0 \times 1.5 \times 10^{-5} \times 30
\]
Solving for \( L_0 \):
\[
L_0 = \frac{0.05}{1.5 \times 10^{-5} \times 30} = \frac{0.05}{0.00045} \approx 111.1 \, \text{cm}
\]
Thus, the length of the rod at 0°C is \( \boxed{111.1 \, \text{cm}} \).