Step 1: Linear charge density of the rod.
\[
\lambda = \dfrac{Q}{L} = \dfrac{24 \times 10^{-6}}{0.1} \,\text{C/m}
\]
Step 2: Expression for electric force due to a uniformly charged rod.
Force on charge $q$ placed at distance $x$ from one end of rod is:
\[
F = k q \lambda \left(\dfrac{1}{x} - \dfrac{1}{x + L}\right)
\]
Step 3: Substituting given values.
\[
q = 1 \times 10^{-6}\,\text{C}, \quad x = 2 \times 10^{-2}\,\text{m}, \quad L = 10 \times 10^{-2}\,\text{m}
\]
\[
F = 9 \times 10^9 \times 10^{-6} \times \dfrac{24 \times 10^{-6}}{0.1}
\left(\dfrac{1}{2 \times 10^{-2}} - \dfrac{1}{12 \times 10^{-2}}\right)
\]
Step 4: Final calculation.
\[
F = 9 \times 24 \times \dfrac{5}{12} = 90\,\text{N}
\]