When light is incident normally on a refracting face of the prism, the deviation \( \delta \) is related to the prism angle \( A \) and the refractive index \( n \) as follows:
The angle of incidence on the first face is \( 0^\circ \), and hence the refraction occurs only at the second face of the prism.
The angle of refraction \( r_2 \) at the second face satisfies Snell's Law:
\[ n = \frac{\sin(i_2)}{\sin(r_2)} \]
where \( i_2 \) is the angle of incidence at the second face. Since the total deviation \( \delta \) is given by:
\[ \delta = i_2 + r_1 - A \]
and for normal incidence, \( r_1 = 0 \), we have:
\[ \delta = i_2 - A \quad \text{or} \quad i_2 = \delta + A \]
Substituting \( i_2 = \delta + A \) into Snell's Law:
\[ n = \frac{\sin(\delta + A)}{\sin A} \]
Hence, the refractive index of the prism material is:
\[ n = \frac{\sin(\delta + A)}{\sin A} \]
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.