Step 1: Binomial distribution parameters
\[
X \sim Binomial(n, p)
\]
Step 2: Use given conditions
\[
\text{Mean} = np, \quad \text{Variance} = np(1-p)
\]
\[
\text{Mean} - \text{Variance} = 1 \implies np - np(1-p) = 1 \implies np^2 = 1
\]
Step 3: Given
\[
2P(x=2) = 3P(x=1)
\]
\[
2 \binom{n}{2} p^2 (1-p)^{n-2} = 3 \binom{n}{1} p (1-p)^{n-1}
\]
\[
2 \frac{n(n-1)}{2} p^2 (1-p)^{n-2} = 3 n p (1-p)^{n-1}
\]
\[
n(n-1) p^2 = 3 n p (1-p)
\]
\[
(n-1) p = 3 (1-p)
\]
Step 4: Solve for \(p\)
\[
(n-1) p = 3 - 3p \implies p(n-1+3) = 3 \implies p(n+2) = 3 \implies p = \frac{3}{n+2}
\]
Step 5: Use \(np^2 = 1\)
\[
n \left(\frac{3}{n+2}\right)^2 = 1 \implies n \frac{9}{(n+2)^2} = 1 \implies 9n = (n+2)^2
\]
Step 6: Solve quadratic for \(n\)
\[
9n = n^2 + 4n + 4 \implies n^2 - 5n + 4 = 0
\]
\[
(n-4)(n-1) = 0 \implies n = 4 \text{ or } 1
\]
Step 7: Calculate \(P(x>1)\)
\[
P(x>1) = 1 - P(x=0) - P(x=1) = 1 - (1-p)^n - n p (1-p)^{n-1}
\]
For \(n=4\),
\[
p = \frac{3}{6} = \frac{1}{2}
\]
\[
P(x>1) = 1 - (1/2)^4 - 4 \times \frac{1}{2} \times (1/2)^3 = 1 - \frac{1}{16} - \frac{4}{16} = 1 - \frac{5}{16} = \frac{11}{16}
\]
Step 8: Calculate \(n^2 P(x>1)\)
\[
4^2 \times \frac{11}{16} = 16 \times \frac{11}{16} = 11
\]