Using the formula for radioactive decay, the remaining atoms after \( 3T \) are:
\[ N = N_0 \left( \frac{1}{2} \right)^3 = 16 \times 10^{20} \times \frac{1}{8} = 2 \times 10^{20} \]Total disintegrations = \( N_0 - N = 14 \times 10^{20} \)
Total energy released = \( 14 \times 10^{20} \times 8 \, \text{MeV} \times 1.6 \times 10^{-13} \, \text{J/MeV} = 17.92 \times 10^8 \, \text{J} \).
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: