β−, α, β+
α, β−, β+
α, β+, β−
β+, α, β−
Mass Defect and Energy Released in the Fission of \( ^{235}_{92}\text{U} \)
When a neutron collides with \( ^{235}_{92}\text{U} \), the nucleus gives \( ^{140}_{54}\text{Xe} \) and \( ^{94}_{38}\text{Sr} \) as fission products, and two neutrons are ejected. Calculate the mass defect and the energy released (in MeV) in the process.
Given:
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is:
In the year 1911, Rutherford discovered the atomic nucleus along with his associates. It is already known that every atom is manufactured of positive charge and mass in the form of a nucleus that is concentrated at the center of the atom. More than 99.9% of the mass of an atom is located in the nucleus. Additionally, the size of the atom is of the order of 10-10 m and that of the nucleus is of the order of 10-15 m.
Read More: Nuclei