Step 1: Identify valid combinations of questions.
Let \( a \) be the number of questions from Section A, and \( b \) from Section B. Then:
\[
a + b = 10, \quad a \geq 4, \quad b \geq 3
\]
Valid combinations: \( (4,6), (5,5), (6,4), (7,3), (8,2) \)
Step 2: Calculate combinations for each case.
\[
\begin{aligned}
(4,6):\quad & \binom{8}{4} \cdot \binom{6}{6} = 70 \cdot 1 = 70
(5,5):\quad & \binom{8}{5} \cdot \binom{6}{5} = 56 \cdot 6 = 336
(6,4):\quad & \binom{8}{6} \cdot \binom{6}{4} = 28 \cdot 15 = 420
(7,3):\quad & \binom{8}{7} \cdot \binom{6}{3} = 8 \cdot 20 = 160
(8,2):\quad & \binom{8}{8} \cdot \binom{6}{2} = 1 \cdot 15 = 15
\end{aligned}
\]
Step 3: Add all possible ways.
\[
70 + 336 + 420 + 160 + 15 = \boxed{986}
\]