Step 1: Convert mass flow to volumetric flow and compute velocities
\[
\dot m = 10\ \mathrm{kg\,s^{-1}},\quad \rho=1000\ \mathrm{kg\,m^{-3}}
\Rightarrow Q=\frac{\dot m}{\rho}=0.01\ \mathrm{m^3\,s^{-1}}.
\]
Areas:
\[
A_s=\frac{\pi (0.07)^2}{4}=3.848\times10^{-3}\ \mathrm{m^2},\quad
A_d=\frac{\pi (0.05)^2}{4}=1.963\times10^{-3}\ \mathrm{m^2}.
\]
Velocities:
\[
V_s=\frac{Q}{A_s}=2.598\ \mathrm{m\,s^{-1}},\quad
V_d=\frac{Q}{A_d}=5.093\ \mathrm{m\,s^{-1}}.
\]
Step 2: Specific energy added to the fluid (Bernoulli with pump)
Elevation change \(=0\). Pressure rise:
\[
\Delta p = 350-(-20)=370\ \mathrm{kPa}=3.70\times10^{5}\ \mathrm{Pa}.
\]
Specific energy added:
\[
e=\frac{\Delta p}{\rho}+\frac{V_d^{2}-V_s^{2}}{2}
=\frac{3.70\times10^{5}}{1000}+\frac{5.093^{2}-2.598^{2}}{2}
=379.59\ \mathrm{J\,kg^{-1}}.
\]
Step 3: Hydraulic power and shaft power
\[
P_{\text{hyd}}=\dot m\,e=10\times 379.59=3795.93\ \mathrm{W}.
\]
With efficiency \(\eta=0.80\),
\[
P_{\text{shaft}}=\frac{P_{\text{hyd}}}{\eta}
=\frac{3795.93}{0.80}=4744.91\ \mathrm{W}
=4.74\ \mathrm{kW}\ (\text{to two decimals}).
\]