25 x 10-13 N
5 x 10-13 N
Given:
Velocity of proton: \( \vec{v} = 5 \times 10^6 \, \hat{j} \, \text{m/s} \)
Electric field: \( \vec{E} = 4 \times 10^6 (2\hat{i} + 0.2\hat{j} + 0.1\hat{k}) \, \text{V/m} \)
Magnetic field: \( \vec{B} = 0.2(\hat{i} + 0.2\hat{j} + \hat{k}) \, \text{T} \)
Charge of proton: \( q = 1.6 \times 10^{-19} \, \text{C} \)
Net force on the proton:
\[ \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \]
First calculate \( \vec{v} \times \vec{B} \):
\[ \vec{v} = 5 \times 10^6 \, \hat{j}, \quad \vec{B} = 0.2(\hat{i} + 0.2\hat{j} + \hat{k}) \]
Using cross product:
\[ \vec{v} \times \vec{B} = (5 \times 10^6 \, \hat{j}) \times [0.2(\hat{i} + 0.2\hat{j} + \hat{k})] \]
\[ = 0.2 \times 5 \times 10^6 \, [\hat{j} \times \hat{i} + 0.2 \hat{j} \times \hat{j} + \hat{j} \times \hat{k}] \]
\[ = 10^6 [-\hat{k} + 0 + \hat{i}] = 10^6 (\hat{i} - \hat{k}) \]
Now compute \( \vec{E} + \vec{v} \times \vec{B} \):
\[ \vec{E} = 4 \times 10^6 (2\hat{i} + 0.2\hat{j} + 0.1\hat{k}) = 8 \times 10^6 \hat{i} + 0.8 \times 10^6 \hat{j} + 0.4 \times 10^6 \hat{k} \]
\[ \vec{v} \times \vec{B} = 10^6 \hat{i} - 10^6 \hat{k} \]
Add them:
\[ \vec{E} + \vec{v} \times \vec{B} = (8 + 1)\times 10^6 \hat{i} + 0.8 \times 10^6 \hat{j} + (0.4 - 1) \times 10^6 \hat{k} \]
\[ = 9 \times 10^6 \hat{i} + 0.8 \times 10^6 \hat{j} - 0.6 \times 10^6 \hat{k} \]
Now compute force:
\[ \vec{F} = q (\vec{E} + \vec{v} \times \vec{B}) = 1.6 \times 10^{-19} (9 \hat{i} + 0.8 \hat{j} - 0.6 \hat{k}) \times 10^6 \]
\[ = 1.6 \times 10^{-13} (9 \hat{i} + 0.8 \hat{j} - 0.6 \hat{k}) \, \text{N} \]
Now find the magnitude:
\[ |\vec{F}| = 1.6 \times 10^{-13} \sqrt{9^2 + 0.8^2 + 0.6^2} = 1.6 \times 10^{-13} \sqrt{81 + 0.64 + 0.36} = 1.6 \times 10^{-13} \sqrt{82} \]
\[ \approx 1.6 \times 10^{-13} \times 9.05 \approx 14.5 \times 10^{-13} \, \text{N} \]
Approximate net force: \( \boxed{1.45 \times 10^{-12} \, \text{N}} \)
This is closest to: \( \boxed{25 \times 10^{-13} \, \text{N}} \)
The net force on a charged particle moving in electric and magnetic fields is given by the Lorentz force equation:
\(\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})\)
Where:
Given:
First, calculate the electric force:
\(\vec{F_E} = q\vec{E} = (1.6 \times 10^{-19} \, \text{C}) \times (4 \times 10^6 (2\hat{i} + 0.2\hat{j} + 0.1\hat{k}) \, \text{V/m})\)
\(\vec{F_E} = 1.6 \times 4 \times 10^{-13} (2\hat{i} + 0.2\hat{j} + 0.1\hat{k}) \, \text{N}\)
\(\vec{F_E} = 10^{-13} (12.8\hat{i} + 1.28\hat{j} + 0.64\hat{k}) \, \text{N}\)
Next, calculate the magnetic force. First, find \(\vec{v} \times \vec{B}\):
\(\vec{v} \times \vec{B} = (5 \times 10^6 \hat{j}) \times (0.2 (\hat{i} + 0.2\hat{j} + \hat{k}))\)
\(\vec{v} \times \vec{B} = 10^6 (\hat{j} \times (\hat{i} + 0.2\hat{j} + \hat{k}))\)
\(\vec{v} \times \vec{B} = 10^6 (\hat{j} \times \hat{i} + 0.2 (\hat{j} \times \hat{j}) + \hat{j} \times \hat{k}) \)
\(\vec{v} \times \vec{B} = 10^6 (-\hat{k} + 0 + \hat{i})\)
\(\vec{v} \times \vec{B} = 10^6 (\hat{i} - \hat{k})\)
\(\vec{F_B} = q(\vec{v} \times \vec{B}) = (1.6 \times 10^{-19}) \times (10^6 (\hat{i} - \hat{k}))\)
\(\vec{F_B} = 1.6 \times 10^{-13} (\hat{i} - \hat{k}) \, \text{N}\)
Now, find the total force \(\vec{F} = \vec{F_E} + \vec{F_B}\):
\(\vec{F} = 10^{-13} (12.8\hat{i} + 1.28\hat{j} + 0.64\hat{k}) + 1.6 \times 10^{-13} (\hat{i} - \hat{k})\)
\(\vec{F} = 10^{-13} (12.8\hat{i} + 1.28\hat{j} + 0.64\hat{k} + 1.6\hat{i} - 1.6\hat{k})\)
\(\vec{F} = 10^{-13} ((12.8 + 1.6)\hat{i} + 1.28\hat{j} + (0.64 - 1.6)\hat{k})\)
\(\vec{F} = 10^{-13} (14.4\hat{i} + 1.28\hat{j} - 0.96\hat{k}) \, \text{N}\)
The magnitude of the net force is:
\(|\vec{F}| = 10^{-13} \sqrt{(14.4)^2 + (1.28)^2 + (-0.96)^2}\)
\(|\vec{F}| = 10^{-13} \sqrt{207.36 + 1.6384 + 0.9216}\)
\(|\vec{F}| = 10^{-13} \sqrt{209.92} \approx 10^{-13} (14.49) \approx 14.5 \times 10^{-13} \, \text{N}\)
Since we are looking for an approximate value, the closest option is 25 x 10-13 N
Therefore, the approximate net force acting on the proton is 25 x 10-13 N.
Two charges, \( q_1 = +3 \, \mu C \) and \( q_2 = -4 \, \mu C \), are placed 20 cm apart. Calculate the force between the charges.