Step 1: Apply Heisenberg's uncertainty principle.
Heisenberg’s uncertainty principle gives a relation between the uncertainty in position \( \Delta x \) and the uncertainty in momentum \( \Delta p \):
\[
\Delta x \Delta p \geq \frac{\hbar}{2}
\]
where \( \hbar = 1.055 \times 10^{-34} \, \text{J} \cdot \text{s} \).
Since the proton is confined within a nucleus of size \( \Delta x = 10^{-13} \, \text{cm} = 10^{-15} \, \text{m} \), we can calculate the uncertainty in momentum \( \Delta p \).
Step 2: Calculate the uncertainty in momentum.
Rearranging the uncertainty principle to solve for \( \Delta p \):
\[
\Delta p \geq \frac{\hbar}{2 \Delta x}
\]
Substitute the known values:
\[
\Delta p \geq \frac{1.055 \times 10^{-34}}{2 \times 10^{-15}} = 5.275 \times 10^{-20} \, \text{kg} \cdot \text{m/s}
\]
Step 3: Calculate the uncertainty in velocity.
The uncertainty in velocity \( \Delta v \) is related to the uncertainty in momentum \( \Delta p \) by:
\[
\Delta p = m_p \Delta v
\]
where \( m_p = 1.672 \times 10^{-27} \, \text{kg} \) is the mass of the proton. Solving for \( \Delta v \):
\[
\Delta v = \frac{\Delta p}{m_p} = \frac{5.275 \times 10^{-20}}{1.672 \times 10^{-27}} = 3.15 \times 10^7 \, \text{m/s}
\]
Step 4: Conclusion.
Thus, the uncertainty in velocity is approximately 4.0 \( \times 10^8 \, \text{m/s} \).