The correct option is(B): λα < λn < λp < λe.
de Broglie wavelength
\(λ=\frac{h}{p}\)
\(⇒λ=\frac{h}{\sqrt{2mK}}\)
Where K: kinetic energy
⇒ For some K,
\(λ∝\frac{1}{\sqrt{m}}\)
Since mα > mn > mp > me
⇒ λα < λn < λp < λe
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Read More: Work and Energy