Question:

A production function at time 𝑑 is given by
\(Y_t=A_tK^a_tL^{1-a}_t\) , 𝛼 ∈ (0, 1), 𝛼 β‰  0.5, 
where π‘Œ is output, 𝐾 is capital, 𝐿 is labour and 𝐴 is the level of Total Factor Productivity. Define per capita output as \(𝑦_𝑑 ≑ \frac{π‘Œ_𝑑}{ 𝐿_𝑑} \)and capital-output ratio as \(π‘˜_𝑑 ≑\frac{ 𝐾_𝑑}{ π‘Œ_𝑑}\) . For any variable π‘₯𝑑 , denote \(\frac{𝑑π‘₯_𝑑}{ 𝑑𝑑}\) by π‘₯Μ‡ . The per capita output growth rate is

Updated On: Oct 1, 2024
  • \(𝛼\)\(\frac{y}{y}=\frac{1}{(1-Ξ±)}\frac{A}{A}+\frac{Ξ±}{(1-Ξ±)}\frac{k}{k}\)
  • \(𝛼\)\(\frac{y}{y}=\frac{Ξ±}{(1-Ξ±)}\frac{A}{A}+\frac{1}{(1-Ξ±)}\frac{k}{k}\)
  • \(𝛼\)\(\frac{y}{y}=(1-Ξ±)\frac{A}{A}+Ξ±\frac{k}{k}\)
  • \(𝛼\)\(\frac{y}{y}=Ξ±\frac{A}{A}+(1-Ξ±)\frac{k}{k}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct option is (A): \(𝛼\)\(\frac{y}{y}=\frac{1}{(1-Ξ±)}\frac{A}{A}+\frac{Ξ±}{(1-Ξ±)}\frac{k}{k}\)
Was this answer helpful?
0
0

Questions Asked in IIT JAM exam

View More Questions