Given:
\[ Y_t = A_t K_t^{\alpha} L_t^{1-\alpha},\qquad \alpha\in(0,1),\ \alpha\neq 0.5, \] perβcapita output \(y_t\equiv Y_t/L_t\). Also the capitalβoutput ratio is defined here as \[ k_t \equiv \frac{K_t}{Y_t}. \] You asked for the growth rate \(\dfrac{\dot y_t}{y_t}\). Below are two commonly used, equivalent expressions and short derivations.
1) Expression in terms of \(A,K,L\) (standard form) Start with the perβworker form: \[ y_t=\frac{Y_t}{L_t}=A_t\left(\frac{K_t}{L_t}\right)^{\alpha}. \] Take logarithms and differentiate: \[ \ln y_t = \ln A_t + \alpha\ln\!\left(\frac{K_t}{L_t}\right) = \ln A_t + \alpha\big(\ln K_t - \ln L_t\big). \] Differentiate w.r.t. time: \[ \frac{\dot y_t}{y_t}=\frac{\dot A_t}{A_t}+\alpha\!\left(\frac{\dot K_t}{K_t}-\frac{\dot L_t}{L_t}\right). \] This is the standard decomposition: growth of per-capita output = TFP growth + Ξ± Γ growth of capital per worker.
2) Equivalent expression in terms of the capitalβoutput ratio \(k_t=K_t/Y_t\) From the definitions, \[ k_t=\frac{K_t}{Y_t}\quad\Rightarrow\quad \frac{K_t}{L_t}=k_t\frac{Y_t}{L_t}=k_t y_t. \] Substitute into \(y_t=A_t(K_t/L_t)^{\alpha}\): \[ y_t = A_t (k_t y_t)^{\alpha} = A_t\,k_t^{\alpha}\,y_t^{\alpha}. \] Rearrange: \[ y_t^{1-\alpha}=A_t\,k_t^{\alpha}. \] Take logs and differentiate: \[ (1-\alpha)\frac{\dot y_t}{y_t}=\frac{\dot A_t}{A_t}+\alpha\frac{\dot k_t}{k_t}. \] Hence \[ \boxed{\displaystyle \frac{\dot y_t}{y_t}=\frac{1}{1-\alpha}\,\frac{\dot A_t}{A_t}+\frac{\alpha}{1-\alpha}\,\frac{\dot k_t}{k_t}. } \]
Summary (both equivalent): \[ \boxed{\frac{\dot y_t}{y_t}=\frac{\dot A_t}{A_t}+\alpha\Big(\frac{\dot K_t}{K_t}-\frac{\dot L_t}{L_t}\Big) \quad\text{(or)}\quad \frac{\dot y_t}{y_t}=\frac{1}{1-\alpha}\frac{\dot A_t}{A_t}+\frac{\alpha}{1-\alpha}\frac{\dot k_t}{k_t} } \] Use the first form when you have growth rates of \(K\) and \(L\); use the second when you have the capitalβoutput ratio \(k\).
| Year | Population of the Economy | GDP of the Economy (in crore) |
| 2010 | 20,000 | 25,000 |
| 2020 | 25,000 | 40,000 |
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |