D | C(t) | ||
0.9 | 0.95 | 0.975 | |
9 | 1.38 | 1.83 | 2.26 |
10 | 1.37 | 1.81 | 2.23 |
11 | 1.36 | 1.80 | 2.20 |
\(-181 < \frac{x}{\frac{S}{\sqrt{N-1}}}<1.81\)
\(-183 < \frac{x}{\frac{S}{\sqrt{N-1}}}<1.83\)
\(-137 < \frac{x}{\frac{S}{\sqrt{N-1}}}<1.37\)
\(-2.23 < \frac{x}{\frac{S}{\sqrt{N-1}}}<2.23\)
Step 1: Define the null hypothesis and test statistic. The null hypothesis is: \[ H_0: \mu = 0 \] The test statistic for the Student's \( t \)-test is: \[ t = \frac{x}{\frac{S}{\sqrt{N-1}}} \]
Step 2: Determine the degrees of freedom. The degrees of freedom (\( D \)) for the test is: \[ D = N - 1 = 10 - 1 = 9 \]
Step 3: Identify the confidence limits. At a 10\% significance level for a two-tailed test, the corresponding confidence level is \( 90\% \). From the table, for \( D = 9 \), the \( t \)-value is: \[ C(t) = \pm 1.83 \]
Step 4: Formulate the test criterion. The null hypothesis will be accepted if: \[ -1.83 < \frac{x}{\frac{S}{\sqrt{N-1}}} < 1.83 \]
Let \( X_1, X_2 \) be a random sample from a population having probability density function
\[ f_{\theta}(x) = \begin{cases} e^{(x-\theta)} & \text{if } -\infty < x \leq \theta, \\ 0 & \text{otherwise}, \end{cases} \] where \( \theta \in \mathbb{R} \) is an unknown parameter. Consider testing \( H_0: \theta \geq 0 \) against \( H_1: \theta < 0 \) at level \( \alpha = 0.09 \). Let \( \beta(\theta) \) denote the power function of a uniformly most powerful test. Then \( \beta(\log_e 0.36) \) equals ________ (rounded off to two decimal places).
Let \( X_1, X_2 \) be a random sample from a distribution having probability density function
Length of the streets, in km, are shown on the network. The minimum distance travelled by the sweeping machine for completing the job of sweeping all the streets is ________ km. (rounded off to nearest integer)