D | C(t) | ||
0.9 | 0.95 | 0.975 | |
9 | 1.38 | 1.83 | 2.26 |
10 | 1.37 | 1.81 | 2.23 |
11 | 1.36 | 1.80 | 2.20 |
\(-181 < \frac{x}{\frac{S}{\sqrt{N-1}}}<1.81\)
\(-183 < \frac{x}{\frac{S}{\sqrt{N-1}}}<1.83\)
\(-137 < \frac{x}{\frac{S}{\sqrt{N-1}}}<1.37\)
\(-2.23 < \frac{x}{\frac{S}{\sqrt{N-1}}}<2.23\)
Step 1: Define the null hypothesis and test statistic. The null hypothesis is: \[ H_0: \mu = 0 \] The test statistic for the Student's \( t \)-test is: \[ t = \frac{x}{\frac{S}{\sqrt{N-1}}} \]
Step 2: Determine the degrees of freedom. The degrees of freedom (\( D \)) for the test is: \[ D = N - 1 = 10 - 1 = 9 \]
Step 3: Identify the confidence limits. At a 10\% significance level for a two-tailed test, the corresponding confidence level is \( 90\% \). From the table, for \( D = 9 \), the \( t \)-value is: \[ C(t) = \pm 1.83 \]
Step 4: Formulate the test criterion. The null hypothesis will be accepted if: \[ -1.83 < \frac{x}{\frac{S}{\sqrt{N-1}}} < 1.83 \]