A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle. Show that the minimum length of the hypotenuse is \((a^{\frac{2}{3}}+b^{\frac{2}{3}})^{\frac{3}{2}}\)
The correct answer is \(=(a^\frac{2}{3}+b^\frac{2}{3})^\frac{3}{2}\) Let \(∆ABC\) be right-angled at \(B\).Let \(AB=x \) and \(BC=y\). Let \(P\) be a point on the hypotenuse of the triangle such that \(P \) is at a distance of \(a\) and \(b\) from the sides \(AB\) and \(BC\) respectively. Let \(∴C=θ\). We have,\(AC=\sqrt{x^2+y^2}\) Now, \(PC=b\,cosecθ \) And,\(AP=a\,secθ \) \(∴AC=AP+PC \) \(∴ AC=b\,cosecθ+a\,secθ … (1)\) \(∴\frac{d(AC)}{dθ}=-b\,cosecθ\,cotθ+a\,secθ\,tanθ\) \(∴\frac{d(AC)}{dθ}=0\) \(⇒a\,secθ\,tanθ=b\,cosecθ\,cotθ\) \(⇒\frac{a}{cosθ}.\frac{sinθ}{cosθ}=\frac{b}{sinθ}\frac{cosθ}{sinθ}\) \(⇒a\,sin^3θ=b\,cos^3θ\) \(⇒(a)^{\frac{1}{3}}sinθ=(b)^\frac{1}{3}cosθ\) \(⇒tanθ=(\frac{b}{a})^\frac{1}{3}\) \(∴sinθ=\frac{(b)^\frac{1}{3}}{\sqrt{a^\frac{2}{3}+d^\frac{2}{3}}} \,and\, cosθ=\frac{(a)^\frac{1}{3}}{\sqrt{a^\frac{2}{3}+d^\frac{2}{3}}} .....(2)\) It can be clearly shown that \(\frac{d^2(AC)}{dθ}<0\) when \(tanθ=(\frac{b}{a})^\frac{1}{3}\). Now when \(tanθ=(\frac{b}{a})^\frac{1}{3}\),we have \(AC=\frac{b\sqrt{a^\frac{2}{3}+b^\frac{2}{3}}}{b^\frac{1}{3}}+\frac{a\sqrt{a^\frac{2}{3}+b^\frac{2}{3}}}{a^\frac{1}{3}}\) [Using(1) and(2)] \(=\sqrt{a^\frac{2}{3}+b^\frac{2}{3}}(b^\frac{2}{3}+a^\frac{2}{3})\) \(=(a^\frac{2}{3}+b^\frac{2}{3})^\frac{3}{2}\) Hence, the maximum length of the hypotenuses is \(=(a^\frac{2}{3}+b^\frac{2}{3})^\frac{3}{2}\)