Step 1: Flow rate.
\( Q = 20 \, L/s = 0.02 \, m^3/s \).
Step 2: Condition for laminar flow.
Laminar if Reynolds number \( Re<2000 \).
\[
Re = \frac{VD}{\nu}
\]
where \( V \) is velocity, \( D \) diameter, and \( \nu \) kinematic viscosity.
Step 3: Velocity.
\[
V = \frac{Q}{A} = \frac{4Q}{\pi D^2}
\]
Step 4: Substitute in Re.
\[
Re = \frac{VD}{\nu} = \frac{4Q}{\pi D \nu}
\]
Set \( Re = 2000 \):
\[
2000 = \frac{4 \times 0.02}{\pi D (6 \times 10^{-6})}
\]
\[
D = \frac{4 \times 0.02}{2000 \pi (6 \times 10^{-6})} = 0.089 \, m
\]
Final Answer:
\[
\boxed{0.09 \, m}
\]