A photoelectron emitted when a light of wavelength 2480 \(\mathring{A}\) falls on a metal, enters a uniform magnetic field of \( \frac{1}{4} \times 10^{-5} \) T perpendicular to it and moves in a circular path of maximum radius 1 m. The work function of the metal is nearly:
Show Hint
- Use \( E = \frac{hc}{\lambda} \) to find photon energy.
- Apply the magnetic force formula to determine the kinetic energy of the emitted electron.
- Use Einstein’s photoelectric equation \( E = \phi + KE \) to determine the work function.
Step 1: Energy of the Incident Photon
The energy of a photon is given by:
\[
E = \frac{hc}{\lambda}
\]
where:
\( h = 6.626 \times 10^{-34} \) J.s (Planck's constant)
\( c = 3.0 \times 10^8 \) m/s (Speed of light)
\( \lambda = 2480 \mathring{A} = 2480 \times 10^{-10} \) m
Substituting the values:
\[
E = \frac{(6.626 \times 10^{-34}) (3.0 \times 10^8)}{2480 \times 10^{-10}}
\]
\[
E = 8.03 \times 10^{-19} \text{ J}
\]
Converting to eV (\( 1 eV = 1.6 \times 10^{-19} \) J):
\[
E = \frac{8.03 \times 10^{-19}}{1.6 \times 10^{-19}} = 5.02 \text{ eV}
\]
Step 2: Kinetic Energy of the Electron
The maximum kinetic energy of the emitted photoelectron is given by:
\[
KE_{\max} = \frac{e^2 B^2 R^2}{2m}
\]
where:
\( e = 1.6 \times 10^{-19} \) C (Charge of an electron)
\( B = \frac{1}{4} \times 10^{-5} \) T
\( R = 1 \) m
\( m = 9.1 \times 10^{-31} \) kg (Mass of an electron)
Substituting:
\[
KE_{\max} = \frac{(1.6 \times 10^{-19})^2 (1/4 \times 10^{-5})^2 (1)^2}{2 \times 9.1 \times 10^{-31}}
\]
\[
KE_{\max} \approx 0.57 \text{ eV}
\]
Step 3: Work Function Calculation
Using the photoelectric equation:
\[
\phi = E - KE_{\max}
\]
\[
\phi = 5.02 - 0.57 = 4.45 \text{ eV}
\]
Thus, the work function of the metal is \( 4.45 \) eV.