Let the original number be \( X \).
The difference (error) between correct and incorrect values:
\[ X \times \frac{17}{13} - X \times \frac{7}{13} = X \times \frac{10}{13} \]
The formula for percentage error is:
\[ \frac{\text{Error}}{\text{Correct value}} \times 100 \]
Substituting the values: \[ \frac{\frac{10}{13}X}{\frac{17}{13}X} \times 100 \]
\[ \frac{10}{17} \times 100 = 58.82\% \]
Thus, the correct answer is 58.82% (Option B).
List-I | List-II |
---|---|
(A) Confidence level | (I) Percentage of all possible samples that can be expected to include the true population parameter |
(B) Significance level | (III) The probability of making a wrong decision when the null hypothesis is true |
(C) Confidence interval | (II) Range that could be expected to contain the population parameter of interest |
(D) Standard error | (IV) The standard deviation of the sampling distribution of a statistic |