Given:
- Speed of the belt, \( v = \sqrt{\frac{gh}{6}} \)
- Coefficient of friction, \( \mu = \frac{5}{3 \sqrt{3}} \)
- Inclination angle, \( \theta = 30^\circ \)
- Height of conveyor, \( h \)
Step 1: Find the length \( L \) of the conveyor belt:
\[
L = \frac{h}{\sin 30^\circ} = \frac{h}{\frac{1}{2}} = 2h
\]
Step 2: Let the person accelerate with maximum acceleration \( a \) up the belt. The frictional force provides the maximum possible acceleration.
Step 3: Using friction:
The maximum acceleration due to friction:
\[
a_{\max} = \mu g \cos \theta - g \sin \theta
\]
where the component \( g \sin \theta \) acts down the incline, and friction acts up the incline opposing slipping.
Step 4: Substitute values:
\[
a_{\max} = \mu g \cos 30^\circ - g \sin 30^\circ = \frac{5}{3 \sqrt{3}} \times g \times \frac{\sqrt{3}}{2} - g \times \frac{1}{2} = \frac{5g}{6} - \frac{g}{2} = \frac{5g - 3g}{6} = \frac{2g}{6} = \frac{g}{3}
\]
Step 5: Using kinematic equation:
\[
L = v t + \frac{1}{2} a t^2
\]
where initial speed \( u = v = \sqrt{\frac{gh}{6}} \), acceleration \( a = \frac{g}{3} \), and distance \( L = 2h \).
Step 6: Substitute values:
\[
2h = \sqrt{\frac{gh}{6}} \cdot t + \frac{1}{2} \times \frac{g}{3} \times t^2 = \sqrt{\frac{gh}{6}} \cdot t + \frac{g t^2}{6}
\]
Step 7: Multiply both sides by 6 to clear denominator:
\[
12h = 6 \sqrt{\frac{gh}{6}} t + g t^2
\]
Rewrite \( 6 \sqrt{\frac{gh}{6}} \):
\[
6 \sqrt{\frac{gh}{6}} = 6 \times \sqrt{\frac{g h}{6}} = 6 \times \frac{\sqrt{g h}}{\sqrt{6}} = \sqrt{6} \sqrt{g h}
\]
Step 8: So:
\[
12h = \sqrt{6 g h} \, t + g t^2
\]
Rewrite:
\[
g t^2 + \sqrt{6 g h} \, t - 12 h = 0
\]
Step 9: Solve quadratic for \( t \):
\[
t = \frac{-\sqrt{6 g h} \pm \sqrt{6 g h + 48 g h}}{2g} = \frac{-\sqrt{6 g h} \pm \sqrt{54 g h}}{2g}
\]
\[
t = \frac{-\sqrt{6 g h} \pm 3 \sqrt{6 g h}}{2g}
\]
Take positive root:
\[
t = \frac{-\sqrt{6 g h} + 3 \sqrt{6 g h}}{2g} = \frac{2 \sqrt{6 g h}}{2g} = \frac{\sqrt{6 g h}}{g} = \sqrt{\frac{6 h}{g}}
\]
Therefore, the time taken by the person to reach from A to B is:
\[
\boxed{ \sqrt{\frac{6 h}{g}} }
\]