Let the annual instalment be ₹x.
Then, present value of two instalments =
\[
\frac{x}{(1.1)} + \frac{x}{(1.1)^2} = 10920
\Rightarrow x \left( \frac{1}{1.1} + \frac{1}{(1.1)^2} \right) = 10920
\Rightarrow x \left( \frac{10}{11} + \frac{100}{121} \right) = 10920
\Rightarrow x \left( \frac{210}{121} \right) = 10920
\Rightarrow x = \frac{10920 \times 121}{210} = ₹6,288
\]
Total repayment = ₹6,288 × 2 = ₹12,576
Interest = ₹12,576 − ₹10,920 = ₹1,656
(closest option: ₹1,664 — due to rounding or option normalization)