Step 1: Capacity rates and heat duty
\[
C_h = \dot m_h c_{p,h} = 2\times 2089 = 4178\ \mathrm{W\,K^{-1}},\qquad
C_c = \dot m_c c_{p,c} = 1\times 4178 = 4178\ \mathrm{W\,K^{-1}}.
\]
Thus \(C_{\min}=C_{\max}=4178\ \Rightarrow\ C_r=C_{\min}/C_{\max}=1\).
Actual 64ac0493b52af67589bd410c:
\[
Q = C_h\,(T_{h,in}-T_{h,out}) = 4178(100-40)=4178\times 60.
\]
Step 2: Effectiveness
\[
Q_{\max}=C_{\min}(T_{h,in}-T_{c,in})=4178(100-20)=4178\times 80,
\]
\[
\varepsilon=\frac{Q}{Q_{\max}}=\frac{4178\times 60}{4178\times 80}=\frac{60}{80}=0.75.
\]
Step 3: NTU from countercurrent relation (for \(C_r=1\))
For a countercurrent exchanger with \(C_r=1\),
\[
\varepsilon=\frac{\mathrm{NTU}}{1+\mathrm{NTU}}.
\]
Hence
\[
0.75=\frac{\mathrm{NTU}}{1+\mathrm{NTU}}
\ \Rightarrow\
\mathrm{NTU} = 3.
\]