At \( x = \frac{2A}{3} \),
\[ v = \omega \sqrt{A^2 - \left(\frac{2A}{3}\right)^2} = \omega \sqrt{\frac{5A^2}{9}} = \omega \frac{\sqrt{5}A}{3} \]New amplitude is \( A' \):
\[ v' = 3v = 3 \left( \omega \frac{\sqrt{5}A}{3} \right) = \omega \sqrt{(A')^2 - \left(\frac{2A}{3}\right)^2} \] \[ \omega \sqrt{5}A = \omega \sqrt{(A')^2 - \left(\frac{2A}{3}\right)^2} \]Squaring both sides:
\[ 5A^2 = (A')^2 - \left(\frac{2A}{3}\right)^2 \] \[ (A')^2 = 5A^2 + \left(\frac{4A^2}{9}\right) = \frac{45A^2}{9} + \frac{4A^2}{9} = \frac{49A^2}{9} \] \[ A' = \frac{7A}{3} \] \[ \therefore \, n = 7 \]Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: