According to Newton’s second law,
\[
F = \frac{dp}{dt}
\]
Hence, impulse equals change in momentum:
\[
\int F\,dt = \Delta p
\]
The particle starts from rest, so initial momentum is zero.
Final momentum is \(Mv\).
\[
Mv = \int_{0}^{2T} F_0\left[1 - \left(\frac{t}{T}\right)^2\right] dt
\]
\[
Mv = F_0 \int_{0}^{2T} \left(1 - \frac{t^2}{T^2}\right) dt
\]
Integrating,
\[
\int \left(1 - \frac{t^2}{T^2}\right) dt
= t - \frac{t^3}{3T^2}
\]
Apply limits:
\[
Mv = F_0 \left[ t - \frac{t^3}{3T^2} \right]_{0}^{2T}
\]
\[
Mv = F_0 \left[ 2T - \frac{(2T)^3}{3T^2} \right]
\]
\[
Mv = F_0 \left[ 2T - \frac{8T}{3} \right]
\]
\[
Mv = F_0 \left( \frac{6T - 8T}{3} \right)
= \frac{4F_0T}{3}
\]
Therefore,
\[
v = \frac{4F_0T}{3M}
\]