The Lorentz force is given by:
\[
\vec{F} = q (\vec{E} + \vec{v} \times \vec{B})
\]
First, calculate the cross product \( \vec{v} \times \vec{B} \):
\[
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
3 & 4 & 0
1 & 2 & 3
\end{vmatrix}
\]
\[
= \hat{i} (4 \times 3 - 0 \times 2) - \hat{j} (3 \times 3 - 0 \times 1) + \hat{k} (3 \times 2 - 4 \times 1)
\]
\[
= \hat{i} (12) - \hat{j} (9) + \hat{k} (6 - 4)
\]
\[
= 12\hat{i} - 9\hat{j} + 2\hat{k}
\]
Now, adding \( \vec{E} \):
\[
\vec{E} + \vec{v} \times \vec{B} = (12\hat{i} - 9\hat{j} + 2\hat{k}) + (-2\hat{k})
\]
\[
= 12\hat{i} - 9\hat{j} + 0\hat{k}
\]
Multiplying by \( q = 2 C \):
\[
\vec{F} = 2 (12\hat{i} - 9\hat{j} + 0\hat{k}) = 24\hat{i} - 18\hat{j}
\]
Magnitude:
\[
|\vec{F}| = \sqrt{(24)^2 + (-18)^2}
\]
\[
= \sqrt{576 + 324} = \sqrt{900} = 30 N
\]