The magnetic force on a charged particle is given by:
\[
\vec{F} = q (\vec{v} \times \vec{B})
\]
Given:
\[
q = 1 \times 10^{-16} \text{ C}, \quad \vec{v} = 2\hat{i} + 4\hat{j}, \quad \vec{B} = B_0(\hat{i} + 4\hat{j})
\]
Now calculate:
\[
\vec{v} \times \vec{B} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & 4 & 0 \\
B_0 & 4B_0 & 0 \\
\end{vmatrix}
= (0)\hat{i} - (0)\hat{j} + (2 \cdot 4B_0 - 4 \cdot B_0)\hat{k} = (8B_0 - 4B_0)\hat{k} = 4B_0 \hat{k}
\]
So,
\[
|\vec{F}| = q \cdot |4B_0| = 1 \times 10^{-16} \cdot 4B_0 = 3 \times 10^{-16}
\Rightarrow B_0 = \frac{3 \times 10^{-16}}{4 \times 10^{-16}} = 0.75 \text{ T}
\]