A particle moving in a circle of radius R with a uniform speed takes a time T to complete one revolution. If this particle were projected with the same speed at an angle ‘θ’ to the horizontal, the maximum height attained by it equals 4R. The angle of projection, θ, is then given by
\(\theta=sin^{-1}(\frac{2gT^2}{\pi^2R})^{\frac{1}{2}}\)
\(\theta=cos^{-1}(\frac{gT^2}{\pi^2R})^{\frac{1}{2}}\)
\(\theta=cos^{-1}(\frac{\pi^2R}{gT^2})^{\frac{1}{2}}\)
\(\theta=sin^{-1}(\frac{\pi^2R}{gT^2})^{\frac{1}{2}}\)
A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
The current passing through the battery in the given circuit, is:
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :
Newton’s 1st law states that a body at rest or uniform motion will continue to be at rest or uniform motion until and unless a net external force acts on it.
Newton’s 2nd law states that the acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the object’s mass.
Mathematically, we express the second law of motion as follows:
Newton’s 3rd law states that there is an equal and opposite reaction for every action.