A particle of mass \(m\) is in an infinite square potential of length \(L\). The wave function is superimposed state of the first two energy eigenstates, given by:
\[ \Psi(x) = \sqrt{\frac{1}{3}} \Psi_{n=1}(x) + \sqrt{\frac{2}{3}} \Psi_{n=2}(x) \]
Identify the correct statements:
A. \( \langle p \rangle = 0 \)
B. \( \Delta p = \frac{\sqrt{3}h}{2L} \)
C. \( \langle E \rangle = \frac{3h^2}{8mL^2} \)
D. \( \Delta x = 0 \)
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
| LIST-I (Energy of a particle in a box of length L) | LIST-II (Degeneracy of the states) | ||
|---|---|---|---|
| A. | \( \frac{14h^2}{8mL^2} \) | I. | 1 |
| B. | \( \frac{11h^2}{8mL^2} \) | II. | 3 |
| C. | \( \frac{3h^2}{8mL^2} \) | III. | 6 |
Choose the correct answer from the options given below:
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is:

A point charge \( q \) is placed at a distance \( d \) above an infinite, grounded conducting plate placed on the \( xy \)-plane at \( z = 0 \).
The electrostatic potential in the \( z > 0 \) region is given by \( \phi = \phi_1 + \phi_2 \), where:
\( \phi_1 = \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{\sqrt{x^2 + y^2 + (z - d)^2}} \)
\( \phi_2 = - \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{\sqrt{x^2 + y^2 + (z + d)^2}} \)
Which of the following option(s) is/are correct?
The figure shows an opamp circuit with a 5.1 V Zener diode in the feedback loop. The opamp runs from \( \pm 15 \, {V} \) supplies. If a \( +1 \, {V} \) signal is applied at the input, the output voltage (rounded off to one decimal place) is:
