The maximum height of a projectile is given by:
\[
H = \frac{u^2 \sin^2 \theta}{2g}
\]
where \( u = 20 \, \text{m/s} \), \( \theta = 30^\circ \), and \( g = 10 \, \text{m/s}^2 \). Since \( \sin 30^\circ = \frac{1}{2} \), we have:
\[
\sin^2 30^\circ = \left( \frac{1}{2} \right)^2 = \frac{1}{4}
\]
\[
H = \frac{20^2 \cdot \frac{1}{4}}{2 \cdot 10} = \frac{400 \cdot \frac{1}{4}}{20} = \frac{100}{20} = 5 \, \text{m}
\]
Thus, the maximum height is:
\[
\boxed{5}
\]