The de Broglie wavelength \(\lambda\) of a particle is given by:
\[
\lambda = \frac{h}{m v}
\]
Let
- \(\lambda_e\) = de Broglie wavelength of electron,
- \(\lambda_p\) = de Broglie wavelength of particle,
- \(m_e = 9 \times 10^{-31} \, \text{kg}\) = mass of electron,
- \(m_p\) = mass of particle,
- \(v_e\) = velocity of electron,
- \(v_p = 4 v_e\).
Given:
\[
\lambda_p = 1.5 \times 10^{-4} \times \lambda_e
\]
Using the formula for wavelength:
\[
\lambda_p = \frac{h}{m_p v_p}, \quad \lambda_e = \frac{h}{m_e v_e}
\]
Dividing these two:
\[
\frac{\lambda_p}{\lambda_e} = \frac{m_e v_e}{m_p v_p}
\]
Substitute values:
\[
1.5 \times 10^{-4} = \frac{m_e v_e}{m_p \times 4 v_e} = \frac{m_e}{4 m_p}
\]
Rearranged:
\[
m_p = \frac{m_e}{4 \times 1.5 \times 10^{-4}} = \frac{9 \times 10^{-31}}{6 \times 10^{-4}} = 1.5 \times 10^{-27} \, \text{kg}
\]