According to question, Momentum of the particle decrease by $10 \%$
As we know, momentum of particle $p=\sqrt{2 m K}$
$P= \sqrt{2}{mK}$
$\Rightarrow p \propto \sqrt{K}$ and $p_{1} \propto \sqrt{K_{1}}$
Final momentum, $p_{1}=p-\frac{10 p}{100}$
$Rightarrow p_{1}=\frac{90 p}{100}$
So, $\frac{p}{p_{1}}=\sqrt{\frac{K}{K_{1}}}$
$\Rightarrow\left(\frac{100}{90}\right)^{2}=\frac{K}{K_{1}}$
$\Rightarrow \frac{10000}{8100}=\frac{K}{K_{1}}$
$\Rightarrow \frac{81}{100}=\frac{K_{1}}{K}$
Decreasing both sides from 1 ,
$1-\frac{81}{100} =1-\frac{K_{1}}{K}$
$\Rightarrow \frac{100-81}{100} =\frac{K-K_{1}}{K}$
$\frac{K-K_{1}}{K} =\frac{19}{100}$
Change in kinetic energy
$\Rightarrow \left(\frac{K-K_{1}}{K}\right) \times 100=\left(\frac{19}{100}\right) \times 100=19 \%$