The capacitance of a parallel-plate capacitor is given by: \[ C = \frac{\varepsilon_r \varepsilon_0 A}{d} \] Where:
- \( \varepsilon_r \) is the relative dielectric constant,
- \( \varepsilon_0 \) is the permittivity of free space \( (8.85 \times 10^{-12} \, \text{F/m}) \),
- \( A \) is the area of the plates,
- \( d \) is the separation between the plates.
Substituting the values: \[ A = 2.0 \, \text{cm} \times 3.0 \, \text{cm} = 6.0 \times 10^{-4} \, \text{m}^2 \] \[ d = 1.0 \, \text{mm} = 1.0 \times 10^{-3} \, \text{m} \] \[ C = \frac{3.7 \times 8.85 \times 10^{-12} \times 6.0 \times 10^{-4}}{1.0 \times 10^{-3}} = 20 \, \text{pF} \]
Find output voltage in the given circuit. 

Consider the following statements: Statement I: \( 5 + 8 = 12 \) or 11 is a prime. Statement II: Sun is a planet or 9 is a prime.
Which of the following is true?
The value of \[ \int \sin(\log x) \, dx + \int \cos(\log x) \, dx \] is equal to
The value of \[ \lim_{x \to \infty} \left( e^x + e^{-x} - e^x \right) \] is equal to