Question:

A $p-n$ junction has acceptor impurity concentration of $10^{17}\, cm ^{-3}$ in the $P$ side and donor impurity concentration of $10^{16} cm ^{-3}$ in the $N$ side. What is the contact potential at the junction? $(k T=$ thermal energy, intrinsic carrier concentration $\left.n_{i}=1.4 \times 10^{10}\, cm ^{-3}\right)$

Updated On: Apr 15, 2024
  • $( kT / e ) \ln \left(4 \times 10^{12}\right)$
  • $( kT / e ) \ln \left(2.5 \times 10^{23}\right)$
  • $(k T / e) \ln \left(10^{23}\right)$
  • $( kT / e ) \ln \left(10^{9}\right)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Constant potential at the junction $ V_{\text {constant }} \frac{k T}{e} \ln \left(\frac{n_{a} n_{d}}{n_{i}^{2}}\right) $ $\therefore V_{\text {constant }} =\frac{k T}{e} \ln \left(\frac{10^{17} \times 10^{16}}{\left(1.4 \times 10^{10}\right)^{2}}\right) $ $=\frac{k T}{e} \ln \left(4 \times 10^{12}\right) $
Was this answer helpful?
0
0

Top Questions on kinetic theory

View More Questions