Step 1: Express the number as a fraction.
Let \( x = 3.1212121212\ldots \), which is a repeating decimal. We can express this as:
\[
x = 3 + 0.1212121212\ldots
\]
Let \( y = 0.1212121212\ldots \). Then we have:
\[
y = 0.\overline{12}.
\]
Step 2: Convert the repeating decimal to a fraction.
To convert \( y = 0.\overline{12} \) to a fraction, multiply both sides by 100:
\[
100y = 12.\overline{12}.
\]
Now subtract \( y = 0.\overline{12} \) from \( 100y = 12.\overline{12} \):
\[
100y - y = 12.\overline{12} - 0.\overline{12},
\]
\[
99y = 12,
\]
\[
y = \frac{12}{99} = \frac{4}{33}.
\]
Step 3: Combine the integer and the fraction.
Thus, we have:
\[
x = 3 + \frac{4}{33} = \frac{99}{33} + \frac{4}{33} = \frac{103}{33}.
\]
Step 4: Find the least multiplier to make \( x \) an integer.
To make \( x = \frac{103}{33} \) an integer, multiply both the numerator and denominator by 33:
\[
x = \frac{103 \times 33}{33 \times 33} = \frac{3399}{1089}.
\]
Thus, multiplying by 33 will make \( x \) an integer.