Step 1: Let the number be \( x \).
Given:
\[
x \equiv 2 \pmod{4}, \quad x \equiv 2 \pmod{5}, \quad x \equiv 2 \pmod{6}
\]
This implies:
\[
x - 2 \text{ is divisible by } \text{LCM}(4, 5, 6)
\]
\[
\text{LCM}(4, 5, 6) = 60 \Rightarrow x - 2 = 60k \Rightarrow x = 60k + 2
\]
Step 2: Find value of \( k \) such that \( x<100 \).
\[
60k + 2<100 \Rightarrow 60k<98 \Rightarrow k<1.63
\]
So the only integer value for \( k \) is \( k = 1 \)
\[
x = 60(1) + 2 = 62
\]